Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex.
نویسندگان
چکیده
Quinol oxidation by the bc(1) complex of Rhodobacter sphaeroides occurs from an enzyme-substrate complex formed between quinol bound at the Q(o) site and the iron-sulfur protein (ISP) docked at an interface on cytochrome b. From the structure of the stigmatellin-containing mitochondrial complex, we suggest that hydrogen bonds to the two quinol hydroxyl groups, from Glu-272 of cytochrome b and His-161 of the ISP, help to stabilize the enzyme-substrate complex and aid proton release. Reduction of the oxidized ISP involves H transfer from quinol. Release of the proton occurs when the acceptor chain reoxidizes the reduced ISP, after domain movement to an interface on cytochrome c(1). Effects of mutations to the ISP that change the redox potential and/or the pK on the oxidized form support this mechanism. Structures for the complex in the presence of inhibitors show two different orientations of Glu-272. In stigmatellin-containing crystals, the side chain points into the site, to hydrogen bond with a ring hydroxyl, while His-161 hydrogen bonds to the carbonyl group. In the native structure, or crystals containing myxothiazol or beta-methoxyacrylate-type inhibitors, the Glu-272 side chain is rotated to point out of the site, to the surface of an external aqueous channel. Effects of mutation at this residue suggest that this group is involved in ligation of stigmatellin and quinol, but not quinone, and that the carboxylate function is essential for rapid turnover. H(+) transfer from semiquinone to the carboxylate side chain and rotation to the position found in the myxothiazol structure provide a pathway for release of the second proton.
منابع مشابه
The energy landscape for ubihydroquinone oxidation at the Q(o) site of the bc(1) complex in Rhodobacter sphaeroides.
Activation energies for partial reactions involved in oxidation of quinol by the bc(1) complex were independent of pH in the range 5. 5-8.9. Formation of enzyme-substrate complex required two substrates, ubihydroquinone binding from the lipid phase and the extrinsic domain of the iron-sulfur protein. The activation energy for ubihydroquinone oxidation was independent of the concentration of eit...
متن کاملProtonmotive pathways and mechanisms in the cytochrome bc1 complex.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membr...
متن کاملReaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc1 complex.
In addition to its main functions of electron transfer and proton translocation, the cytochrome bc(1) complex (bc(1)) also catalyzes superoxide anion (O(2)(*)) generation upon oxidation of ubiquinol in the presence of molecular oxygen. The reaction mechanism of superoxide generation by bc(1) remains elusive. The maximum O(2)(*) generation activity is observed when the complex is inhibited by an...
متن کاملProton-coupled electron transfer at the Qo-site of the bc1 complex controls the rate of ubihydroquinone oxidation.
The rate-limiting reaction of the bc(1) complex from Rhodobacter sphaeroides is transfer of the first electron from ubihydroquinone (quinol, QH(2)) to the [2Fe-2S] cluster of the Rieske iron-sulfur protein (ISP) at the Q(o)-site. Formation of the ES-complex requires participation of two substrates (S), QH(2) and ISP(ox). From the variation of rate with [S], the binding constants for both substr...
متن کاملThe Molecular Evolution of the Qo Motif
Quinol oxidation in the catalytic quinol oxidation site (Q(o) site) of cytochrome (cyt) bc(1) complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell's chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 18 شماره
صفحات -
تاریخ انتشار 1999